6 resultados para gene A2

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from membrane phospholipids and is believed to be the rate-limiting enzyme in the arachidonic acid pathway. We report herein the isolation of a 3 kb fragment of rodent genomic DNA containing part of the first intron, the first exon and 5'-flanking sequence. The start site of transcription was mapped by 5'-rapid amplification of cDNA ends and corroborated by ribonuclease protection assay. The gene has a TATAless promoter with no classical Sp1 binding sites or initiator element. A microsatellite series of CA repeats was noted in the 5'-flanking region of both the rodent and human promoters. Deletion constructs have been analysed for luciferase activity and confirmed promoter activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arachidonic acid release in cells highly over expressing cytosolic phospholipase A2 has been attributed to mitogen-activated protein kinase phosphorylation of cytosolic phospholipase A2 on serine-505. To investigate the role of cytosolic phospholipase A2 in cellular physiology, we attempted to inhibit cytosolic phospholipase A2 in the intact cell employing an antisense RNA strategy. Swiss 3T3 cells were stably transfected with an antisense cytosolic phospholipase A2 expression vector. A clone of cells with reduced immunodetectable cytosolic phospholipase A2, compared to a vector transfected cell line, was identified by Western blotting and a corresponding decrease in phospholipase A2 activity was confirmed by enzymatic assay in cell free extracts. However, arachidonic acid release from intact cells in response to agonists was not different between antisense and control cell lines. Thus, arachidonic acid release in intact cells with decreased cytosolic phospholipase A2 activity is likely to be modulated by rate limiting factors that are extrinsic to cytosolic phospholipase A2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triple Negative Breast Cancer (TNBC) is defined by the lack of ERα, PR expression and HER2 overexpression and is the breast cancer subtype with the poorest clinical outcomes. Our aim was to identify genes driving TNBC proliferation and/or survival which could represent novel therapeutic targets. We performed microarray profiling of primary TNBCs and generated differential genelists based on clinical outcomes following the chemotherapy regimen FEC (5-Fluorouracil/Epirubicin/Cyclophosphamide -‘good’ outcome no relapse > 3 years; ‘poor’ outcome relapse < 3 years). Elevated expression of thromboxane A2 receptor (TBXA2R) was observed in ‘good’ outcome TNBCs. TBXA2R expression was higher specifically in TNBC cell lines and TBXA2R knockdowns consistently showed dramatic cell killing in TNBC cells. TBXA2R mRNA and promoter activities were up-regulated following BRCA1 knockdown, with c-Myc being required for BRCA1-mediated transcriptional repression. We demonstrated that TBXA2R enhanced TNBC cell migration, invasion and activated Rho signalling, phenotypes which could be reversed using Rho-associated Kinase (ROCK) inhibitors. TBXA2R also protected TNBC cells from DNA damage by negatively regulating reactive oxygen species levels. In summary, TBXA2R is a novel breast cancer-associated gene required for the survival and migratory behaviour of a subset of TNBCs and could provide opportunities to develop novel, more effective treatments.